The structure of optimal partitions of orthogonal polygons into fat rectangles

نویسندگان

  • Joseph O'Rourke
  • Geetika Tewari
چکیده

Motivated by a VLSI masking problem, we explore partitions of an orthogonal polygon of n vertices into isothetic rectangles that maximize the shortest rectangle side over all rectangles. Thus no rectangle is “thin”; all rectangles are “fat.” We show that such partitions have a rich structure, more complex than what one might at first expect. For example, for partitions all “cuts” of which are anchored on the boundary, sometimes cuts are needed 1 2 or 1 3 of the distance between two polygon edges, but they are never needed at fractions with a larger denominator. Partitions using cuts without any restrictions seem especially complicated, but we establish a limit on the “depth” of cuts (roughly, how distant from the boundary they “float” in the interior) and other structural constraints that lead to both an O(n) bound on the number of rectangles in an optimal partition, as well as a restriction of the cuts to a polynomial-sized grid. These constraints may be used to develop polynomial-time dynamic programming algorithms for finding optimal partitions under a variety of restrictions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Algorithm for Covering Rectangular Orthogonal Polygons with a Minimum Number of r-Stars

Introduction This paper presents an algorithm for covering orthogonal polygons with minimal number of guards. This idea examines the minimum number of guards for orthogonal simple polygons (without holes) for all scenarios and can also find a rectangular area for each guards. We consider the problem of covering orthogonal polygons with a minimum number of r-stars. In each orthogonal polygon P,...

متن کامل

Partitioning orthogonal polygons into fat rectangles in polynomial time

We provide a polynomial-time algorithm to partition an orthogonal polygon of n vertices into isothetic rectangles so that the shortest rectangle side is maximized over all rectangles. Thus no rectangle is “thin”; all rectangles are “fat.”

متن کامل

Erratum to: Computing Partitions of Rectilinear Polygons with Minimum Stabbing Number

In this note, we report an error in our paper “Computing Partitions of Rectilinear Polygons with Minimum Stabbing Number” [2]. Given an orthogonal polygon P and a partition of P into rectangles, the stabbing number of the partition is defined as the maximum number of rectangles stabbed by any orthogonal line segment inside P . Abam et al. [1] introduced the problem of finding a partition of P i...

متن کامل

Fat Polygonal Partitions with Applications to Visualization and Embeddings

Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition ne...

متن کامل

Computing conforming partitions of orthogonal polygons with minimum stabbing number

Let P be an orthogonal polygon with n vertices. A partition of P into rectangles is called conforming if it results from cutting P along a set of interior-disjoint line segments, each having both endpoints on the boundary of P . The stabbing number of a partition of P into rectangles is the maximum number of rectangles stabbed by any orthogonal line segment inside P . In this paper, we consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Geom.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2004